

X | , ŗ 5 •́,• 9 • د **`**# ι . Ą 16 ۲. 9 O م • j• د . ι ι *•^µ 10. 4 J

2 9 ١ ł 3 ľ L. ۷ 11, 12, \$ª , 11 0 10 ' || ²|| 30 2 در <mark>ľ</mark>6 Ć R Į •4 (1),• ۰, . . •)• • (2)۵ 27 , 1 Ĩ 11 24 4, • 4 łι A۹ , •• ř 39,0 | ||⁰ 7 ! 370 • ł (G)2, 3' AC . E' (۹ آ ĩ ! ، ز ۲ 2.2 3'ACE(1 A DNA E1)

1. $F_{\mu} = C_{\mu} = \frac{1}{2} \frac$ 2.3.2 NGS Data Quality Checks 4. **I** A H (**33** ;:// **3** · **1** · **1** / **3** · **1** / **I** A H/) 21. $1. \quad \bullet_{\mu_{1}} = \frac{1}{17} \left(\begin{array}{c} 22 \\ -1 \end{array}\right)^{2} \left($ 2.3.3 De Novo Transcriptome Assembly 2. E , •• 22 , • × • , • • • . 3. $B_{1} = 23$, a = 6, a = 7, a = 6, a = 7, a5. E • • • • (33 ;:// • • · · · / • • 25'. 6. CD-HI (>> :// • - • / · - >/) 26. 1. ♣ A + (>> ,:// >> ,:// >> ,:// >> ,/ 2.3.4 Toxin Gene Identification and **Expression Quantification** 2. DIA D ($\sum_{\mu} \frac{1}{\mu} \frac{1$ · · · ·)

3. EA (
$$333$$
 :// $1 \mu^{-1} - 1 \mu$

3 Methods

3.1 NA I

- 3.3 N -G (NG) C D N

2. (E) (S) (S)نی سرد می اور شراع ^مر می و معر شراح م^و م^وه م^و

Box 1 Abridged Pipeline Example Commands. A few command examples are given; documentation for each program should be referenced for all command arguments and parameters, and only examples are provided. All CPU/thread arguments should be modified based on computing resources:

Usage:

fastqc seqfile1 seqfile2.. seqfileN
fastqc[-ooutput dir][--(no)extract][-ffastq|bam|sam]
[-ccontaminant file] seqfile1.. seqfileN

fastqc RAWDATA_PAIR_1.fastq.gz RAWDATA_PAIR_2.fastq.gz - o OUTPUT_DIRECTORY

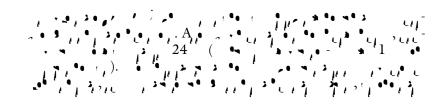
Usage:

PE [-threads <threads>] [-phred33|-phred64] [-trimlog <trimLogFile>] [-quiet] [-validatePairs] [-basein <inputBase> | <inputFile1> <inputFile2>] [-baseout <outputBase> | <outputFile1P> <outputFile1U> <outputFile2P> <outputFile2U>] <trimmer1>... or: SE [-threads <threads>] [-phred33|-phred64] [-trimlog

<trimLogFile>] [-quiet] <i nputFile> <outputFile> <trimmer1>...

j ava - j ar trimmomatic-0.35. j ar PE - threads 4 - phred33 RAWDATA_-PAIR_1.fastq.gz RAWDATA_PAIR_2.fastq.gz OUTPUT_R1- paired.fastq OUTPUT_R1- unpaired.fastq OUTPUT_R2- paired.fastq OUTPUT_R2unpaired.fastq ILLUMINACLIP: TruSeq3-PE-2.fa: 2:40:15 SLIDINGWIN-DOW: 4:15 LEADING: 20 TRAILING: 20 MINLEN: 50 HEADCROP: 9

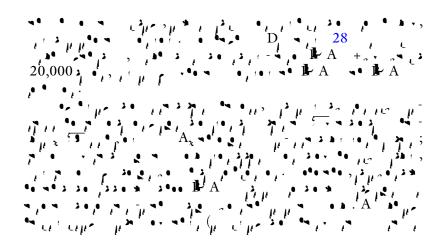
Usage: pear <options>


(•,), (• ·)

```
St and ard (mandatory):
- f, - - forward-fastq <str > Forward paired-end FASTQ file.
-r, --reverse-fastq<str>Reverse paired-endFASTQfile.
- o, - - output <str > Output filename.
pear -f INPUT_R1-paired.fastq -r INPUT_R2-paired.fastq
                                                            - O
OUTPUT NAME
### FLASH exampl e command ###
SYNOPSI S
Usage:
flash[OPTIONS] MATES_1. FASTQ MATES_2. FASTQ
flash[OPTIONS] -- interleaved-input (MATES.FASTQ | -)
flash[OPTIONS] --tab-delimited-input (MATES.TAB | -)
flash - o OUTPUT_PREFIX - t 5 I NPUT_R1- paired. fastq I NPUT_R2- paired.
fastq-r 140-f 350-s 50-d OUTPUT_DI RECTORY
### TRI NI TY exampl e command ###
SYNOPSI S
#Usage:
# - - seqType <string>: type of reads: ('fa' or 'fq')
#
# - - max_memory <stri ng> : suggested max memory to use by #Tri nity where
limiting can be enabled. (jellyfish, sorting, etc)
#providedinGb of RAM, ie. '--max_memory 10G'
#
#If pairedreads:
#--left <string>:left reads, one or more file names #(separated by
commas, no spaces)
#--right <string>:right reads, one or more file names #(separated by
commas, no spaces)
#
#Or, if unpaired reads:
# --single <string> :single reads, one or more file names, #comma-
```

--samples_file <string> tab-delimited text file #indicating bi ol ogi cal replicaterel ati onships. #ex. #cond_A cond_A_rep1 A_rep1_l eft.fq A_rep1_right.fq #cond_A cond_A_rep2 A_rep2_left.fq A_rep2_right.fq #cond_B cond_B_rep1B_rep1_left.fqB_rep1_right.fq #cond_B cond_B_rep2 B_rep2_left.fqB_rep2_right.fq # Trinity -- seqTypefq -- max_memory 50G -- left INPUT_R1- paired.fastq. gz --right INPUT_R2-paired.fastq.gz --CPU 6 --full_cleanup --min_contig_length100--verbose ### CD- HI T exampl e command ### SYNOPSI S Usage: cd-hit-est [Options] cd-hit-est-i INPUT_SEQUENCE-oOUTPUT_SEQUENCE-c1-n8 ### BLAST+ exampl e command ### SYNOPSI S Usage: blastx[-h][-help][-import_search_strategyfilename] [-export_search_strategy filename] [-task task_name] [- db dat abase_name] [-dbsizenum_letters][-gilistfilename][-seqidlistfilename] [-negative_gilistfilename] [-entrez_queryentrez_query] [-db_soft_mask filtering_algorithm] [-db_hard_mask filtering_algorithm] [-subject_subject_input_file] [-subject_loc_range] [-query input_file] [-out out put_file] [-evalue evalue] [-word_size int_value] [- gapopen open_penal t y] [- gapext end ext end_penal t y] [-qcov_hsp_percfloat_value] [-max_hspsint_value] [-xdrop_ungapfloat_value] [-xdrop_gapfloat_value] [-xdrop_gap_final float_value] [-searchspint_value] [-seg [-sum_stats bool_value] [-max_intron_length length] SEG_options]

```
(\mathbf{v}_{i}, \mathbf{v}_{i}, \mathbf{v}_{i})
```

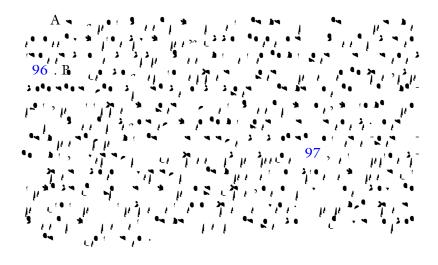

[-soft_maskingsoft_masking] [-matrix_matrix_name] [-thresholdfloat_value] [-culling_limitint_value] [-best_hit_overhang float_value] [-best_hit_score_edge float_value] [-window_size int_value] [-ungapped] [-lcase_masking] [-query_loc range] [-strandstrand] [-parse_deflines] [-query_gencodeint_value] [-outfmt format] [-show_gis] [-num_descriptionsint_value] [-num_alignmentsint_value] [-line_lengthline_length] [-html] [-max_target_seqs num_sequences] [-num_threads int_value] [-remote] [-comp_based_stats compo] [-use_sw_tback] [-version] blastx - query I NPUT_SEQUENCE - dbnr - max_target_seqs 3 - num_threads 8-outfmt'6stdstitle'-outBlastx_nr_outfmt6 ### RSEM exampl e command ### SYNOPSI S Usage: rsem-prepare-reference [options] reference_fasta_file (s) reference name rsem-calculate-expression [options] upstream_read_file (s) reference_name sample_name rsem-calculate-expression [options] --paired-end upstream_read_file(s) downstream_read_file(s) reference_name sample_name rsem-calculate-expression [options] --alignments [--paired-end]

ر جرابا جریا و جرا و جدیا جرا جرا و م

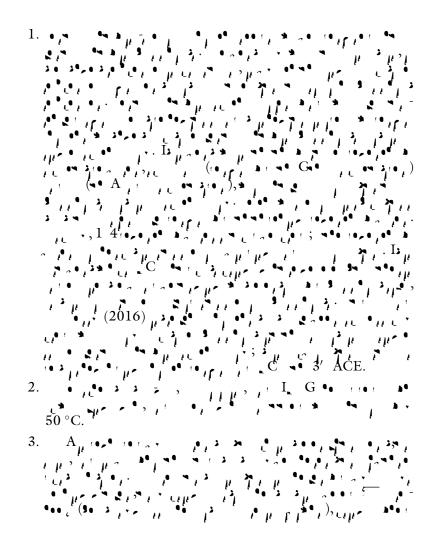
3.3.4 Toxin Gene Identification and Expression Quantification

. 2 ì , ' K ł 3 łι A 0_{χ} 13 5 r'•• ı ŀ 50 ۰, 3.0 2

7 3 •• •• , 2 -3.0 1 1 1 1 2 3 ι,μ. Ε΄ 2 32 A-•• (ы/В 31 .,•, ₿ .. B.••• · 1-11 • . B 2 2 5 u. 2.1 ŧ. 1 .. 3.4 , , 11-• B 7,) لا لا مر ال 2 (3 • 348 ř •••• 11 ł Е 3 49,1 51 .), 3`• 174 B, ι 51 1 30,0 11- , , , • • ۹ ; • . [51 • ₁₁-"•y ، د Е C1 , ·•• · · · · · · · 111- • 48 🖣 • **• •** • 2 ųι Ł • 5 ·,), (2, · • •, ; 10 -04 7 . . " . " . " . " • 10• • • 70 - 20 - 10 - 1


3.4

68, 69 . L 5 - • • .**●** : : ŀ 2 2 μ. i. 310 120 11 9 13 . A 2 27 •• • 5 11-• • 11 2 ٠ ,•• **;**, $E_{a}, 2^{a}, 3^{a}, 4^{a}, 4^{a},$ 3.0 ι 71. •٦ι 71 13. 3 3 ه کې د کې 1 د اه م مددن 1. 27 348 • 7. 11, 2, 20 ۲ ا^عاد کرد. **,** ' µ•≳ i ٩, • 24 1 ΝL · · · · · · · · · · · 1 • 3 • 1 • 11.11.11 1171.1 4 14 11 11 · une intern • • **, • > •**• 4 **b** (2 - ** 1 ، ، • • • ، ر• • • • 72. 2 1 put Ti


 $\begin{array}{c} \mathbf{A} \\ \mathbf{$

3.5 H. - $(-1)^{-1}$ $(-1)^{-$

٠, 3 4 ۹ ۹ 2 FΑ • • 2. A,◄ 1 11 c ٢ 2 2 ٢ 115 (FD '<mark>87</mark>.F 2 3 88. FD 89 AF) BA 11 Ą A 95 2. **د**ا. 2 11 1 44 J ۰, ! 5.1 27 11-•

4 Notes

3 3 4 14 15 1 γ. **γ**. € А 1 . .. 1,11 • F А () 2 DE 3 A. ، • , U, А Ċ 2 , **u** -80 °℃ • جر ا 3 А ι u[€] f 14 **~** • , 12 80 °C, 📜 ג А م^در ι . I 3 pine 1 U. ۹. , λL I. E ? • د د 111 Α, T. • J CH'

- А 4. I • I.r., D ٢. ١ • • ۰. ۱ D A, • 2 3' ACE D'A • . 3 1 1
- 5. 🤜 p c K K 11 נ 11 11-2 •• . 111 ;; 3 3' ACE 3 A•, •, **ч** Γ D (• 10.3 .0 1 . 2 1 1 2 , **. • •** , ` , 16 11 L
- ,:(1)I ⊶ (6. به ی **ال** و ۹۹ ۶ C -7 1 ٦. 25 * J • • • **50** ک ک \$ 2 ٩. 2 (2) •• 3.0 • 3,⁰0 ۲. **.**î 11-۵ • 3,40 • `C[#] 11 •• (3) Į •• 3.0 13 **b** (20

13. A, D, A, , , -B, A, ,

, E (2013) A (4.465) , B C G (4.465) , E (2011) , E (2011) 62. 63. F H' H E 129 37 H A 139:

- 66. C (2017) (3):230 240

- 70. A, A

 $B_{\mu} = E_{\mu}^{0} = 9(10):2640 = 2649$ E, A, F. BG (2013) 73. (1998) 75. (2005) B. (4):1107 1118 B E 22 76. (2005) E B E 22(12):2472 2479 D A, G , (2003) F, (2003) F, (4):405 411 (4):405 411 82. A, D, L, C, A, C , (2015) G , (2015) G

- 83. D, EE (2017) EE (2017) 84. D, C, , EE, EE, (2012)

مراجع از مرار مراجع را از مراجع مراجع مراجع مراجع مراجع مرار مراجع را مراجع م